51龙凤茶楼论坛网-51栖凤楼茶楼论坛最新消息,如何能找到附近上门女,附近品茶联系方式

设为首页 | 网站地图 | 联系方式 | 中国科学院
首页 所况简介 机构设置 支撑平台 研究生教育 全国科普基地 创新文化 科学传播 人才招聘
新闻中心
重要新闻
图片新闻
科研动态
交流与培训
综合新闻
媒体扫描
学术会议
相关图片
20200812104327.jpg
W020200124315612629474.jpg
现在位置: 首页 > 新闻中心 > 科研动态
【Nature Communications】电荷自泵浦激励的蓝色能源器件
发表日期: 2020-08-28 文章来源:
打印 字体大小: 关闭
  

  摩擦纳米发电机(Triboelectric nanogenerator, TENG)通过摩擦起电和静电感应可以实现将环境中的机械能转化为电能,以此为基础发展的微纳能源、自驱动传感以及蓝色能源等技术将为物联网、健康监测、电子皮肤、海洋开发等重要新兴领域提供能源技术基础。现阶段摩擦纳米发电机进一步走向实际应用受到两个方面的挑战:一是通过摩擦实现的表面电荷密度较低,使器件性能还无法满足多种实际应用的需求;二是摩擦造成的材料磨损和发热会影响器件的耐久性。 

  2018年报道的电荷泵浦策略和电荷自泵浦摩擦纳米发电机(Nano Energy, 2018, 49, 625)为解决这些问题提出了重要的思路,即通过浮置导体层来约束电荷,并通过泵浦发电机向浮置层中注入电荷。注入的束缚电荷可类同于摩擦静电荷激发电场,但其电荷密度理论上仅受限于介电击穿强度的限制,同时不需要通过剧烈的摩擦产生。该工作首次在大气环境下将有效电荷密度提升到1.02mC/m2,实现了重要突破。在此基础上,20204月报道的基于电荷泵浦策略的旋转式摩擦纳米发电机(Adv. Energy Mater., 2020, 10, 2000605)实现了旋转式TENG在低频激励下的高输出性能,器件在2Hz低频驱动下可达到658mW的峰值功率和225mW的平均功率。以上工作实现了电荷密度和摩擦强度之间关联的解耦,进一步推动了TENG的功率输出及耐久性瓶颈问题的解决。在电荷泵浦器件中,电荷被完全约束在浮置的导体层中,与普通TENG将静电荷完全约束在电介质表面类似,从静电感应的角度仍遵循普通TENG的原理。     

  近日,中国科学院北京纳米能源与系统研究所首次提出了电荷穿梭原理(Charge shuttling)和基于电荷穿梭的摩擦纳米发电机(Charge-shuttling-based triboelectric nanogenerator, CS-TENG)。不同于普通摩擦纳米发电机中将摩擦静电荷完全约束在电介质表面,CS-TENG中将电荷限域于导电域中,并利用电荷在导电域中的往复穿梭形成电流,驱动负载?;谧级猿频乃嫉缬蛑械绾傻南嗷プ饔每梢圆迪裾涸亓髯拥拇┧?,实现转移电荷量的加倍。导电域中的电荷作为工质可以通过泵浦TENG高效注入,实现电荷的自泵浦激励。基于以上原理,实现了高性能的能量收集器件,达到了1.85mC/m2的超高有效输出电荷密度。在此基础上,以CS-TENG为核心发电单元制备了高性能集成球形蓝色能源器件,成功应用于水波能收集。在低频水波激励下,该器件可实现电荷的自泵浦激励,并由单泵浦TENG对多主TENG同时激励,峰值电流可达1.3mA,峰值功率可达126.67mW,且在300kΩ的低负载电阻下可实现最大的功率输出,实现了蓝色能源器件性能的新突破,且随着器件集成CS-TENG单元数量的提升,输出将会进一步提高。该工作还展示了器件在波浪驱动下,同时点亮600LED灯,并用于自驱动温度和气压检测,显示了该器件在蓝色能源等领域应用的巨大潜力。电荷穿梭原理提供了一种全新的基本工作模式,大幅提升了器件表面电荷密度,为相关基于限域结构中电荷运动的新型器件研发以及TENG在自驱动系统、海洋蓝色能源等领域的应用提供了新思路和方向,促进了高性能TENG实际应用的发展。相关成果以“Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling”为题发表在Nature Communications上。 

  该研究工作得到了国家重点研发计划、国家自然科学基金、中国科学院青年创新促进会、北京市科学技术委员会等项目资助。 

1. CS-TENG的器件结构和工作原理。a)电荷穿梭原理示意图。(b)器件工作原理和类比模型示意图。(c)器件照片。(d)器件典型电荷量输出。(e)器件充电容曲线。

 
2. 水波激励下集成器件的性能表征。a,b水波激励单个集成器件a和器件网络b的原理示意图。(c)蓝色能源的愿景图。(d)集成器件单个周期内的单侧电流输出峰和电荷量曲线。(e)集成器件在不同负载下的峰值功率和平均功率曲线。(f)集成器件点亮600LED阵列。(g)集成器件的应用电路连接图。h,i集成器件驱动温度计的电压曲线h和实验照片ij,k集成器件驱动气压计的电压曲线j和实验照片k

评 论
 
  版权所有:中国科学院北京纳米能源与系统研究所   Copyright 2024   京ICP备17026275号-1   京公网安备 11011602001028号
地址:北京市怀柔区雁栖经济开发区杨雁东一路8号院 邮编: 101400